Lilly Sm

National Aeronautics and Space Administration Goddard Space Flight Center Contract No. NAS-5-9299

ST - CM - 10462

CONDITION REQUIRED FOR THE STABILITY OF ORBITAL MOTION

by
K. V. Kholshevnikov
(USSR)

(CATEGORY)

23 MARCH 1966

4 4 40

CONDITION REQUIRED FOR THE STABILITY OF ORBITAL MOTION

Vestnik Leningradskogo Universiteta Seriya Matematiki, Mekhaniki i Astronomii No. 1, vypusk 1, 172-3, LENINGRAD, 1966.

by K. V. Kholshevnikov

SUMMARY

It is proved that to achieve the stability of the orbital motion the condition h < 0 is necessary, h being the energy constant.

. *

1.- We shall consider the motion of a particle in the gravitational field of an arbitrary body (further called the planet), having an axi-symmetrical structure. By strength of the condition of field conservation there exists the energy integral

$$T = V + h, \tag{1}$$

and the validity of the Laplace formula

$$\frac{d^2R}{dt^2} = U + 4h. \tag{2}$$

Here h is the energy constant; T is the kinetic energy of the mass unit of the particle; V is a mass-flow function; U = 4V + 2QV; $R = r^2$, where r is the radius-vector;

$$Q = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}.$$

Utilizing the homogeneity of the mass-flow function of the problem of \underline{n} bodies, Jacobi derived from the formulas (1) and (2) the necessary condition h < 0 of solar system's stability.

^{*} NEOBKHODIMOYE USLOVIYE USTOYCHIVOSTI ORBITAL NOGO DVIZHENIYA

In our case the mass-flow function

$$V = x^2 \left\{ \frac{1}{r} - \sum_{n=2}^{\infty} J_n \frac{P_n \left(\frac{z}{r}\right)}{r^{n+1}} \right\}$$
 (3)

is devoid of homogeneity. Here κ^2 is the product of the gravitational constant by the mass of the planet; P_n are the Legendre polynomials; J_n are constants. We took for the unit of length the greatest radius-vector of planet's surface.

According to Lagrange, the motion of a material point is said to be steady, if at $t \gg t_0$ the point does emerge from the finite region of space M.

If we take for the region ${\bf M}$ a sphere of arbitrary radius, it is well known that the condition

$$h < 0. (4)$$

is sufficient for the stability.

We shall demonstrate that the condition (4) is indispenseble if we take for M any closed finite region of space D, which would not intersect the planet, and in which

$$U>0. (5)$$

Assume $h \ge 0$, and that the particle shall never emerge from the region D. Then, it follows from formulas (2) and (5):

$$\frac{d^2R}{dt^2} > U_0 > 0. ag{6}$$

Integrating, we find

$$R - R_0 > \frac{U_0}{2} (t - t_0)^2 + \frac{dR(t_0)}{dt} (t - t_0), \tag{7}$$

whence $R = r^2 \xrightarrow{r^2 \to \infty} \infty$, which is in contradiction with the assumption just made. Thus the requirement of the condition (4) has been demonstrated.

2. - It is quite probable that for planets of the solar system the inequality (5) is fulfilled in the whole outer space. If this is so, then at $h \geqslant 0$ the particle either drifts away to infinity or falls on the planet.*

^{*} This seems evident. However, it is possible to show that there exist force fields in which the motion along the circle $r = r_0 > 1$ is possible for any great \underline{h} .

It has been possible to demonstrate mathematically the inequality (5) for $r \geqslant 1$, for the series (3) may be divergent at r < 1. To demonstrate this, let us note first of all that at $r \geqslant 1$ the series (3) may be differentiated over x, y, z termwise, for the coefficients J_n of the arbitrary body of revolution [1] satisfy the inequality

$$|J_n| \leqslant \frac{C}{n^{5/2}},\tag{8}$$

where C is a certain constant. That is why the operator 0 may be introduced under the sign of the sum (3) and we may take advantage of the Euler formula for an homogenous function. As a result we shall obtain

$$U = \frac{2x^2}{r} \left\{ 1 + \sum_{n=2}^{\infty} (n-1) J_n \frac{P_n \left(\frac{z}{r}\right)}{r^n} \right\}. \tag{9}$$

Assume $J_k = \sup_{n>k} \{ |j_n| n^{5/2} \} \quad (j_k \le C).$

Since

$$\left| \sum_{n=2}^{\infty} (n-1) J_n \frac{P_n}{r^n} \right| < \frac{|J_2|}{r^3} + j_3 \sum_{n=3}^{\infty} \frac{1}{r^n n^{3/2}} < \frac{1}{r^3} \left\{ |J_2| + J_3 \left[\left(\frac{3}{2} \right) - 1 - \frac{1}{2^{3/2}} \right] \right\} \quad (r \ge 1).$$

the quantity U will be strictly positive at $r \gg 1$ if

$$|J_2| + j_3 \left[\zeta \left(\frac{3}{2} \right) - 1 - \frac{1}{2^{3/2}} \right] = |J_2| + 1,26j_3 - 1.$$
 (10)

Here $\zeta(x)$ is a Riemann-zeta-function.

For the Earth [2] $j_3 < J_2 \approx 10^{-3}$. Obviously, the inequality (10) is fulfilled for all the planets of the solar system.

Therefore, the motion of a particle in the gravitational field of an axi-symmetrical planet may, according to Lagrange, take place in the M-region only in the case when the inequality h < 0 is satisfied.

We may take for the region M any finite part of space $r \gg 1$, which coincides with any finite part relative to the planet of the outer space, with a precision to the difference between the equatorial and polar radii of the planet.

REFERENCES

- [1]. K. V. KHOLSHEVNIKOV. O velichine koeffitsientov razlozheniya potentsiala Vestn.LGU, 13, 155, 1965
- [2].- Y. KOZAI.- The potential of the earth derived from satellite motions.

 Dynamics of satellites.- Berlin, 1962 (Springer).

Contract No.NAS-5-9299 Consultants & Designers, Inc. Arlington, Virginia Translated by ANDRE L. BRICHANT on 23 March 1966

DISTRIBUTION

GODDARD SPACE F.C.		NA	NASA HQS		OTHER CENTERS	
610	CLARK, TOWNSEND STROUD BOURDEAU MEREDITH	SS SG	NEWELL, NAUGLE MITCHELL SCHARDT DUBIN	Ames RC SONETT LIBRARY		
611	McDONALD ABRAHAM, BOLDT VKB, WILLIAMS SERLEMITSOS	SL	LIDDEL BRYSON FELLOWS HIPSHER		ley RC ADAMSON KATZOFF	
6 1 2	HEPPNER NESS	SM	HOROWITZ FOSTER	304	BUGLIA	
613	KUPPERIAN HALLAM	RR	GILL KURZWEG	-	QUEIJO WEATHERWAX	
6 1 4 6 1 5	WHITE BAUER GOLDBERG	RRA REC RTR	WILSON GOULD NEILL	UC LA KAULA		
640	STONE HESS MEAD NORTHROP CAMERON MUSEN	ATSS WX	SCHWIND ROBBINS SWEET	JPL WYCK WPAF	OFF B	
630 500 547 730	SQUIRES GI for SS [3] MENGEL SIRY STAMPFL LIBRARY FREAS			Co ue	TDBX -T	